DECLARATION DES PERFORMANCES N°DOP-GA-FMTH-001

1. <u>Produit :</u> Goujon d'ancrage à couple contrôlé ;

2. Nom du produit : Goujon ancrage F-MTH zingué M6, M8, M10, M12, M14, M16 et

M20;

3. <u>Usage prévu</u>: Cheville métallique à expansion par vissage à couple contrôlé en acier

zingué pour mise en œuvre sous charges statiques ou quasi-statiques

dans du béton non-fissuré;

Béton non-fissuré de classe C20/25 à C50/60 suivant la NF EN 206-1

en ambiance intérieure sèche;

4. Fabricant: Faynot Industrie SA

1, rue Emile Faynot

08800 Thilay

France

5. <u>Système</u>: Système d'attestation de conformité de niveau 1;

6. <u>a) Evaluation Technique Européenne</u>: ETE 18/0699;

b) Normes harmonisées: Non applicable;

c) EAD de référence : EAD330232-00-0601 « Mechanical Fasteners for use in concrete » ;

d) Organisme notifié : Instituto de Ciencias de la Construcción Eduardo Torroja

C/ Serrano Galvache n.º4.

28033 MADRID

ESPAGNE

Organisme notifié n°1219

e) Système d'évaluation : Système d'attestation de conformité de niveau 1 ;

f) Constance des performances : Certificat CE 1219-CPR-0204 ;

7. Performances déclarées :

Paramètres de mise en œuvre des goujons d'ancrage F-MTH

F-MTH (acier zingué)			Performances								
1-14111			M6	M8	M10	M12	M14	M16	M20		
	Paramètres de mise en œuvre										
d_0	Diamètre nominal de l'outil de perçage	[mm]	6	8	10	12	14	16	20		
Tinst	Couple nominal de mise en œuvre	[Nm]	7	20	35	60	90	120	240		
	Profondeur d'ancrage standard										
Lmin	Longueur minimale de la tige	[mm]	60	75	85	100	115	125	160		
h _{min}	Epaisseur minimale du béton-support	[mm]	100	100	110	130	150	168	206		
h ₁	Profondeur minimale du trou percé	[mm]	55	65	75	85	100	110	135		
h _{nem}	Profondeur d'ancrage total de la cheville dans le béton-support	[mm]	49,5	59,5	66,5	77	91	103,5	125		
h _{ef,std}	Profondeur d'ancrage effective	[mm]	40	48	55	65	75	84	103		
$t_{\rm fix}$	Epaisseur maximale de l'élément fixé pour rondelle DIN 125	[mm]	L-58	L-70	L-80	L-92	L-108	L-122	L-147		
Smin	Espacement minimal entre chevilles	[mm]	35	40	50	70	80	90	135		
Cmin	Distance au bord minimale	[mm]	35	40	50	70	80	90	135		
	Profondeur d'ancrage réduit										
Lma	Longueur minimale de la tige	[mm]		60	70	80		110	130		
h _{min}	Longueur minimale de la tige	[mm]		100	100	100		130	150		
h_1	Profondeur minimale du trou percé	[mm]		50	60	70		90	107		
h _{nem}	Profondeur d'ancrage total de la cheville dans le béton-support	[mm]		46,5	53,5	62		84,5	97		
h _{ef,red}	Profondeur d'ancrage effective	[mm]		35	42	50		65	75		
t_{fix}	Epaisseur maximale de l'élément fixé pour rondelle DIN 125	[mm]	100	L-57	L-67	L-77		L-103	L-121		
Smin	Espacement minimal entre chevilles	[mm]		40	50	70		90	135		
Cmin	Distance au bord minimale	[mm]		40	50	70		90	135		

DECLARATION DES PERFORMANCES N°DOP-GA-FMTH-001

<u>Valeurs de résistance caractéristique aux charges de traction pour la méthode de calcul A conformément à l'ETAG 001 annexe C ou EN 1992-4 des goujons d'ancrage F-MTH</u>

F-MTI	H (acier zingué)			Performan								
				M6	M8	M10	M12	M14	M16	M2		
N _{Rk.s}	Charges de traction : Rupture de l'acier		n > n	1								
	Résistance caractéristique		[kN]	7,4	13,0	23,7	33,3	49,1	60,1	99,		
γ _{M,*}	Coefficient de sécurité partiel		[-]	1,40	1,40	1,40	1,40	1,40	1,40	1,4		
(Charges de traction : Rupture par extraction-glissement	au béton-suj	port									
	Profondeur d'ancrage standard											
N _{Rk,p}	Résistance caractéristique dans un béton-support non-fissi	ıré C20/25	[kN]	3)	3)	19,0	3)	3)	3)	3		
γ _{ins} 1) γ ₂ 2)	Coefficient de sécurité de mise en œuvre		[-]				1,0					
		C30/37	[-]				1,22					
Ψ_c	Coefficient majorateur sur N _{Rk,p}	C40/50	[-]				1,41					
		C50/60	[-]				1,55					
	Profondeur d'ancrage réduit											
N _{Rk,p}	Résistance caractéristique dans un béton-support non-fissu	ré C20/25	[kN]		10	3)	3)		3)	3)		
γ _{ins} 1) γ ₂ 2)	Coefficient de sécurité de mise en œuvre		[-]			1,0			1	,0		
1-	Coefficient majorateur sur $N_{Rk,p}$ C40/50 C50/60		[-]		1,22				1,22			
Ψ_c			[-]			1,41			1,41			
			[-]							1,55		
C	harges de traction : Rupture du béton-support				-	-,						
	Profondeur d'ancrage standard											
h _{ef,std}	Profondeur d'ancrage effective		[mm]	40	48	55	65	75	84	103		
k _{ucr,N} 1)	Coefficient d'application sur béton-support non-fissuré		[-]				11.0					
k ₁ ²⁾	Coefficient d'application sur béton-support non-fissuré		[-]	10,1								
Y _{ins} 1) Y2 ²⁾	Coefficient de sécurité de mise en œuvre					1,0						
S _{cr,} N	Rupture par cône : entraxe		[mm]				3 x hef					
C _{cr,} N	Rupture par cône : distance au bord		[mm]				1,5 x her					
Scr,sp	Rupture par fendage : entraxe		[mm]	160	192	220	260	300	280	360		
Ccr,sp	Rupture par fendage : distance au bord		[mm]	80	96	110	130	150	140	180		
	Profondeur d'ancrage réduit		[]		,,,	110	150	130	110	100		
h _{ef.red}	Profondeur d'ancrage effective		[mm]		35	42	50		65	75		
Sucr.N1)	Coefficient d'application sur béton-support non-fissuré		[-]		33	11,0	30		11			
k ₁ ²⁾	Coefficient d'application sur béton-support non-fissuré		[-]						1.1			
Ym* 1)						10,1			10	,,1		
(2 ²)	Coefficient de sécurité de mise en œuvre		[-]			1,0			1,	0		
Scr,N	Rupture par cône : entraxe		[mm]			3 x het			3 x hei			
Ccr,N	Rupture par cône : distance au bord		[mm]			1,5 x hef			1,5 s	h _{ef}		
Scr, sp	Rupture par fendage : entraxe		[mm]		140	168	200		260	300		
C _{cr,sp}	Rupture par fendage : distance au bord		[mm]		70	84	100		130	150		

Déplacement sous charges de traction des goujons d'ancrage F-MTH

F-MTH (acier zingué)		Performances									
1-1411	ir (aciei zingue)	M6	M8	M10	M12	M14	M16	M20			
	Profondeur d'ancrage sta	ndard									
N	Charge de service de traction	[kN]	3,8	6,6	9,0	12,6	15,6	18,5	25,1		
δ_{N0}	Déplacement à court terme	[mm]	0,4	0,7	1,0	1,2	1,3	1,9	2,2		
δNx	Déplacement à long terme	[mm]	1,8	2,1	2,4	2,6	2,7	3,3	3,8		
	Profondeur d'ancrage réd	uit									
N	Charge de service de traction	[kN]		4,8	6,5	8,5		12,6	15,6		
$\delta_{\rm N0}$	Déplacement à court terme	[mm]		0,3	0,6	1,0		1,6	1,9		
$\delta_{N\infty}$	Déplacement à long terme	[mm]		1,4	1,7	2,1		2.7	3,0		

Valeurs de résistance caractéristique aux charges de cisaillement pour la méthode de calcul A conformément à l'ETAG 001 annexe C ou EN 1992-4 des goujons d'ancrage F-MTH

F-MTH (acier zingué)				Performances									
				M6	M8	M10	M12	M14	M16	M20			
	rges de cisaillement : Rupture de l'a	cier sans bras de levier											
$V_{Rk,s}$	Résistance caractéristique		[kN]	5,1	9,3	14,7	20,6	28,1	38,4	56,3			
$k_7^{1)}$	Coefficient de ductilité		[-]				1,0						
γ_{Ms}	Coefficient de sécurité partiel	[-]	1,25										
Char	rges de cisaillement : Rupture de l'a	cier avec bras de levier											
$M^0_{Rk,s}$	Moment de flexion caractéristique		[Nm]	7,7	19,1	38,1	64,1	102,2	163,1	298,5			
γ _{M,s}	Coefficient de sécurité partiel		[-]	1,25									
Char	ges de cisaillement : Rupture du bé	ton-support											
ks1)	Coefficient k	pour hef,std (standard)	[-]	1,0	1,0	1,0	2,0	2,0	2,0	2,0			
$k^{2)}$	Coefficient k	pour hef,red (réduit)	[-]		1,0	1,0	1,0		2,0	2,0			
$\gamma_{\rm ins}^{(1)}$	Coefficient de sécurité de mise en o	al Mice	[]	10									
$\gamma_2^{(2)}$	Coefficient de securite de mise en o	cuvie	[-]	1,0									
Char	ges de cisaillement : Rupture au bo	rd du béton-support											
16	Longueur effective de la cheville	pour hef,std (standard)	[mm]	40	48	55	65	75	84	103			
41	Dongaeur erreeuve de la eneville	pour hef,red (réduit)	[mm]		35	42	50		65	75			
d_{nom}	Diamètre nominal de la cheville		[mm]	6	8	10	12	14	16	20			
γ _{ins} 1) γ ₂ 2)	Coefficient de sécurité de mise en œuvre [-]			1,0									

Paramètre pertinent uniquement pour un calcul selon la EN 1992-4
Paramètre pertinent uniquement pour un calcul selon l'ETAG 001 Annexe C
Rupture par extraction/glissement au béton-support non-dimensionnant

¹⁾ Paramètre pertinent uniquement pour un calcul selon la EN 1992-4 ²⁾ Paramètre pertinent uniquement pour un calcul selon l'ETAG 001 Annexe C

DECLARATION DES PERFORMANCES N°DOP-GA-FMTH-001

Déplacement sous charges de cisaillement des goujons d'ancrage F-MTH

F-MTH (acier zingué)		Performances									
			M6	M8	M10	M12	M14	M16	M20		
	Profondeur d'ancrage standard										
V	Charge de service de cisaillement	[kN]	2,9	5,3	8,4	11,8	16,0	21,9	32,1		
δ_{V0}	Déplacement à court terme	[mm]	0,65	2,80	1,75	2,45	2.78	3,53	4,13		
$\delta_{V\infty}$	Déplacement à long terme	[mm]	0,98	4,20	2,63	3,68	4.16	5,29	6,19		
	Profondeur d'ancrage réduit							-/	-,		
V	Charge de service de cisaillement	[kN]		5,3	8,4	11,8		21.9	32,1		
δv_0	Déplacement à court terme	[mm]		0,59	1,22	1,10		3,10	3,40		
δ_{Vx}	Déplacement à long terme	[mm]		0,89	1,83	1,65		4,60	5,10		

8. <u>Documentation technique spécifique</u>: Non pertinent;

Les performances du produit identifié aux points 1 et 2 sont conformes aux performances déclarées données au point 7. Conformément au règlement n°305/2011/EU, la présente déclaration des performances est établie sous la seule responsabilité du fabricant mentionné au point 4.

Signée pour le fabricant et en son nom par :

Jean-Edouard Gissinger – Directeur Général Faynot Industrie SA

A Thilay – France, le 20 Septembre 2018